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Abstract—When working with large-scale network data, the
interconnected entities often have additional descriptive infor-
mation. This additional metadata may provide insight that can
be exploited for detection of anomalous events. In this paper, we
use a generalized linear model for random attributed graphs to
model connection probabilities using vertex metadata. For a class
of such models, we show that an approximation to the exact model
yields an exploitable structure in the edge probabilities, allowing
for efficient scaling of a spectral framework for anomaly detection
through analysis of graph residuals, and a fast and simple
procedure for estimating the model parameters. In simulation,
we demonstrate that taking into account both attributes and
dynamics in this analysis has a much more significant impact
on the detection of an emerging anomaly than accounting for
either dynamics or attributes alone. We also present an analysis
of a large, dynamic citation graph, demonstrating that taking
additional document metadata into account emphasizes parts of
the graph that would not be considered significant otherwise.

Index Terms—Subgraph detection, network modularity, signal
detection theory, attributed graph modeling, generalized linear
models

I. INTRODUCTION

In numerous big data applications, relationships between
entities are of interest. Connections between computers may
be analyzed for a computer security application [1], for
example, and large social networks are frequently analyzed
to find communities and influential figures [2], [3]. In these
applications, while the entities themselves may be of interest, it
is their connections and relationships that provide real insight
and situational awareness.

When working with relational data, a graph is a natural
mathematical structure for data representation. A graph G =
(V,E) is a pair of sets: a set of vertices V representing the
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entities, and a set of edges E denoting their relationships
or connections. Traditionally, graphs consist of only vertices
and their connections, possibly with weights on the edges.
In many application domains, relational datasets also contain
contextual information on both edges and vertices. We receive
raw collections not as a graph, but as a (potentially multi-
source) set of heterogeneous data points. When a graph is
constructed, a large fraction of the data is not considered. If
these usually-ignored portions of the data are retained, they
can be useful for many purposes. In particular, these metadata
provide extra dimensions to the graph that can help determine
which observed edges are likely to occur, and which are out of
the ordinary. This enables the uncued detection of anomalies in
the graph, which is the primary objective of many applications.

In earlier work, we developed a framework for uncued
anomaly detection in large, dynamic graphs [4]. Detection
of anomalous subgraphs is an important capability across a
variety of applications, such as detection of malicious software
in a computer network, or the detection of threat actors in a
communication network [5]. This framework treats a graph
as an instance drawn from a distribution of random graphs,
and performs spectral analysis of graph residuals (i.e., the
difference between the observed graph and its expected value)
to determine the presence of anomalies. This analysis uses a
given expected degree model, which has a low-rank expected
value structure, to facilitate efficient residuals analysis. The
parameters of this model have a simple, closed-form estimator
that is approximately asymptotically unbiased, as shown in [6].
The residuals were analyzed over time, with a filter applied
to emphasize certain behaviors. Steps toward optimizing such
filters were later presented in [7].

In this paper, we demonstrate a new technique for detection
of anomalies in large, attributed graphs. Leveraging recent
work in subgraph detection, we show that this technique
enables the detection of emergent activity that would not be
detectable in a static graph, or one without attributes. This
technique is based on a generalized linear model (GLM)
framework for data modeling. Since this model has some
properties that would make it intractable for real-time analysis



on large datasets, we provide an approximation that enables
fast parameter estimation and efficient analysis of attributed
graphs at large scales.

The remainder of this paper is organized as follows. In
Section II, we outline basic graph properties, and the attributes
considered in our analysis. Section III presents the anomaly
detection problem model and our temporal integration tech-
nique. In Section IV, we present the analysis of an efficient
method for incorporating the GLM into the subgraph detection
framework, which allows for an eigendecomposition of the
residuals matrix to be performed in linear time for a constant
number of categorical attributes. Section V presents results
of this technique in simulation, demonstrating the power of
using both dynamics and attributes in the analysis of graph
residuals, and in Section VI we present findings when this
technique is applied to a large document corpus. In Section
VII, we summarize and outline future research directions.

II. GRAPHS AND ATTRIBUTES

As mentioned previously, a graph is a pair of sets G =
(V,E). A graph may be either directed, where an edge goes
from one vertex to another, or undirected, where the two
vertices are connected with no notion of ordering. In the
former case, E ⊂ V ×V , where ordering denotes the direction,
whereas in the latter case E consists of 2-vertex subsets
of V . For the purpose of this paper, we will consider only
unweighted graphs, though the analysis can be extended to
graphs with weights. For convenience, let N = |V | and
M = |E|. An important notion in our analysis is that of
vertex degree. The degree of a vertex is the number of other
vertices with which it shares an edge, i.e., the degree of v ∈ V
is |{u|{u, v} ∈ E}| for undirected graphs, and in a directed
setting, v has in- and out-degrees of |{u|(u, v) ∈ E}| and
|{u|(v, u ∈ E}|, respectively.

In our detection framework, we make use of matrix repre-
sentations of a graph. The adjacency matrix A of the graph is
a matrix in which the entry in row i and column j is nonzero
only if there is an edge from vertex i to vertex j. (This requires
an arbitrary labeling of the vertices with integers from 1 to N .)
The value of an entry will be the edge weight in the case of
a weighted graph, or 1 for an unweighted graph. Also, if the
graph is undirected, the adjacency matrix will be symmetric.
Finally, let k ∈ ZN denote the vector of observed degrees,
with the ith component ki being the degree of vertex i. For
directed graphs, there will be two vectors, kin and kout, for in-
and out-degrees.

We will consider graph attributes that can be divided into
the following cases:
• Vertex attributes: properties of the entities, which may be

real-valued or categorical;
• Edge attributes: properties of the relationships, which

may be real-valued or categorical;
• Vertex pair attributes: regardless of the presence of an

edge, an attribute regarding a pair of vertices.
Within this context, edge attributes are typically part of the
observed relationships, e.g., duration of a connection in a com-

puter network or amount of money transferred in a financial
graph. Thus, real-valued attributes can be expressed as edge
weights, and categorical attributes can be encoded through the
use of multi-graphs, i.e., graphs with multiple edges allowed
between one pair of vertices, in this case denoting different
kinds of relationships.

With this in mind, we will limit the scope of attributes
we consider to those related to vertices and pairs of ver-
tices. That is, the attributes of interest will be those that
manifest themselves as parameters to the model (intrinsic
vertex properties) rather than a specific network instance
(observed relationships). For the purpose of the approximation
introduced in Section IV, we will also only consider vertex
pair attributes that are categorical. While this ignores some
potentially interesting behavior—such as cases where past
observations impact the probability of future ones—it enables
a convenient, exploitable model that enables efficient residuals
analysis in a broad space of random graphs.

III. PROBLEM MODEL

We pose the subgraph detection problem as one of tradi-
tional signal detection theory, as first discussed in [8]. The
objective, given an observed graph over time, G(n), is to
resolve the following binary hypothesis test:{

H0 : The observed graph is “noise” GB

H1 : The observed graph is “signal+noise” GB ∪GS .

Here, GB = (V,E) is drawn from a distribution of random
graphs, and GS = (VS , ES) is a small subgraph (NS =
|VS | � N ) that is embedded into the background. This
subgraph will be unlikely to occur under the background
distribution, and, therefore, is an anomaly and will serve as
the signal. Only cases where the subgraph is embedded on
vertices already existing in the background, i.e., VS ⊂ V and
GB ∪GS = (V,E ∪ ES), are considered.

The present work is focused on graphs with attributes on
the vertices, and between pairs of vertices. For this purpose,
we will assume that the metadata are not affected by the
embedding procedure. That is, when embedding a subgraph
into a background graph GB , which has fixed attributes,
the vertices of selected to comprise GS will maintain their
attribute values, and only the topology will change.

We resolve the hypothesis test through analysis of graph
residuals. Filter coefficients h are given to integrate the resid-
uals over a time window. An approximation of E[A(n)] is
derived from the observed dynamic graph, and we consider
the eigendecomposition of the integrated residuals matrix,

UΛUT =
L−1∑
`=0

h` (A(n− `)− E [A(n− `)]),

where L is the length of the time window. By considering
only a few eigenvectors, we can reduce the dimensionality
of the problem, and efficiently determine the presence of an
anomalous subgraph.



As in [7], we will consider a known signal model, where
the subgraph behavior of interest is known, but its position
within the background is not. To compute these coefficients,
a 3-way tensor of the subgraph adjacency matrix AS(n) is
formed, where two dimensions correspond to vertices and one
dimension corresponds to time, and a rank-1 approximation
for the tensor is computed, as described in [9]. The factor of
this approximation along the temporal dimension is used for
the filter coefficients. As noted in [7], this will maximize the
spectral norm of the integrated subgraph

L−1∑
`=0

AS(n− `)h`,

thus improving its detectability in the eigenspace of the resid-
uals matrix. In the subsequent sections, we will demonstrate
that, while temporal integration provides a significant benefit
in terms of subgraph detection ability, knowledge of vertex
attributes allows for detection of much subtler anomalies.

IV. RESIDUALS ANALYSIS IN ATTRIBUTED GRAPHS

To model a random graph without edge weights, each
possible edge will be modeled as a Bernoulli random variable.
Let the probability of an edge occurring between vertices i and
j be pij . For an attributed graph, we use a logistic regression
model based on vertex and edge attributes. Let βi be a vector
of real-valued attributes for vertex i, and βij be the attributes
of vertex pair (i, j). Using a logistic regression framework,
we can use the same principle as linear regression to map a
linear combination of attributes to edge probabilities, i.e.,

pij =
1

1 + exp
(
−xT

outβi − xT
inβj − xT

pairβij

) . (1)

Here, xout, xin and xpair are the attribute weights for source ver-
tices, destination vertices, and pairs of vertices, respectively.
Note that, for undirected graphs, xout = xin. This sort of model
has been used in link prediction [10], to quantify the impact
of attributes on whether or not an edge occurs.

While this generalized linear model allows a direct mapping
of attributes to probabilities, this comes at the expense of a
relatively expensive fitting procedure. A maximum likelihood
technique can be used to estimate the coefficients in xin, xout
and xpair, but this algorithm will cost O(N2) time per iteration,
which is not tractable for large graphs. Also, to enable scaling
to very large graphs, which are typically sparse, it is beneficial
to have an exploitable structure in the expected value matrix
that enables fast calculation of residuals without storing a
large, dense matrix. For example, when using Newman’s
modularity matrix, as described in [11], the residuals matrix is
the sum of a sparse matrix and a rank-1 matrix, which allows
efficient computation of eigenvalues. No such exploitable
structure exists for the GLM, meaning that the residuals matrix
may be a dense matrix with no special structure, which will
require O(N2) time and space simply for storage.

Since we are typically interested in sparse graphs, we use
a log-linear model rather than a logistic-linear model for edge

probabilities. That is, we allow the approximation

pij ≈ exp
(
xT

outβi + xT
inβj + xT

pairβij

)
,

since for small values of x, ex ≈ (1 + e−x)−1. The log-linear
model is frequently used as a generalized linear model when
a distribution can have an arbitrary positive expected value,
such as a Poisson distribution. For small expected values, a
Poisson distribution approaches a Bernoulli distribution, so
this model is a good approximation for sparse graphs where
any individual edge is fairly unlikely. As we demonstrate in
the remainder of this section, this approximation has properties
that can be exploited for computational efficiency.

In the case of categorical vertex pair attributes, i.e., cases in
which the vertex pair attributes are dependent on the categories
of the associated vertices, the rank of the expected value matrix
will be equal to the number of categories. Let C be the number
of categories, Ic be the indices of vertices in category c, and
I(i) be the indices of all vertices in the same category as
vertex i. The probability matrix P = {pij} has the form

P = diag (αout) ΘXΘT diag (αin) . (2)

Here, Θ is an N × C assignment matrix, where each row
contains a single entry of 1, with all other entries being 0.
The position of the nonzero entry corresponds to the category
of the vertex, i.e., if vertex i is in category c, the ith row of
Θ will have a 1 only in column c. The matrix X = {xij}
consists of the terms from (1) dependent upon the categories
of the vertex pairs, meaning that xij = xT

pairβIiIj
, and the

vectors αout and αin are defined such that αout(i) = xT
outβi and

αin(i) = xT
inβi. This matrix will have rank C.

The relatively low rank of the probability matrix allows for
fast computation of the principal eigenvectors of A − P . As
discussed in [4], matrix-vector multiplications are at the heart
of algorithms for computing extreme eigenvectors and eigen-
values of matrices. With a probability matrix in the form of (2),
eigenvalues of the residuals matrix can be computed without
computing the full probability matrix, and the running time
will scale tractably for large graphs. To compute the product
(A−P )z for an arbitrary vector z ∈ RN , we first compute Az,
which is a sparse matrix-vector multiplication taking O(M)
time. Computing Pz requires two entry-wise scalings (by αin
and αout, O(N) time each), two multiplications by the sparse
Θ matrices (also O(N) time), and multiplication of a vector by
X (O(C2) time). Finally, Pz is subtracted from Az, costing
O(N) time, yielding a total running time for the matrix-
vector multiplication of O(M+N+C2). Using the implicitly-
restarted Lanczos algorithm to compute m eigenvectors of the
residuals matrix, the matrix-vector multiplication running time
implies a total time complexity of O((M+C2)m+Nm2+m3)
per restart, where the number of restarts depends on the
relative distance between consecutive eigenvalues. Thus, to
compute a fixed number of eigenvectors, if the number of
categories remains fixed, the per-iteration cost of the algorithm
will scale linearly in the number of edges.

In addition to efficient computation of the eigenspace, this
model enables a fast parameter approximation scheme based



on moment matching. Consider the sum over the entries of
the observed adjacency matrix corresponding to edges going
from category a to category b. In expectation, we have

E

∑
i∈Ia

∑
j∈Ib

aij

 =
∑
i∈Ia

∑
j∈Ib

αout(i)αin(j)XIaIb

= ‖αout(Ia)‖1‖αin(Ib)‖1XIaIb
.

Consider also the expected out-degree of vertex i. We have

E

 N∑
j=1

aij

 =
N∑

j=1

αout(i)αin(j)XI(i)I(j)

= αout(i)
C∑

c=1

‖αin(Ic)‖1XI(i)Ic

Similarly, the expected in-degree is given by
αin(i)

∑C
c=1 ‖αout(Ic)‖1XIcI(i). By assuming that each

block of αin and αout corresponding to a distinct category
has unit L1 norm, we can estimate the probability matrix by
letting the estimate of X be a matrix of the observed volumes
of the portions of the graph corresponding to different
category pairs, i.e., X̂ = ΘTAΘ, and the estimates of αin and
αout be the observed in- and out-degree vectors, normalized
in each category block to have an L1 norm of 1. Thus, we
have estimates

α̂in(i) =
kin(i)∑

j∈I(i) kin(j)
and α̂out(i) =

kout(i)∑
j∈I(i) kout(j)

.

The restriction of the α vectors having unit L1 norm does not
disallow any probability matrices of the form (2). Indeed, for
arbitrary vectors αout and αin, the same P can be computed
with block-normalized vectors using a new X matrix, X̃ =
{x̃ij}, such that

x̃ij = xij‖αout(Ii)‖1‖αout(Ij)‖1.

Another interesting feature of this approximation is that, like
the modularity matrix of [11], it creates a residuals matrix
where the vector of all 1s, denoted 1, is in the nullspace.
Multiplying the adjacency matrix on the right by 1, we get the
vector of out degrees. The ith row of the estimated probability
matrix times 1 will yield

kout(i)
‖kout(I(i))‖1

N∑
j=1

kin(j)
‖kin(I(j))‖1

X̂I(i)I(j)

=
kout(i)

‖kout(I(i))‖1

C∑
j=1

X̂I(i)Ij
= kout(i).

This holds similarly, yielding kT
in , when multiplying by 1T

on the left. Thus, any eigenvectors (for undirected graphs) or
singular vectors (for directed) that are not in the nullspace
will be orthogonal to 1, and the projection into the principal
singular vectors will be centered at the origin.

V. SIMULATION RESULTS

To demonstrate the impact of this additional information
on subgraph detection, a Monte Carlo simulation was run,
generating dynamic random graphs from a model based on
(2). The graphs generated are undirected, with 3 categories,
and 1000 vertices in each category. The α vector is created
according to a power law, since many large, real-world graphs
have powerlaw distributions. The categorical parameters create
a homophily effect, causing higher probability of connectivity
between vertices in the same category, similarly to the model
for interaction rates proposed in [12]. In particular, we use

X =

24 10000 3500 4000
3500 10200 3100
4000 3100 9900

35 ,

making connection within a category about 2.5–3 times as
likely as between categories. The α vector was block-unit-
normalized, so the values in X correspond to the expected
volumes within the corresponding parts of the graph.

To incorporate dynamics, we generate 8 samples from this
distribution independently. This is used for the H0 case. For
the H1 case, 5 vertices are chosen uniformly at random
from each category, and these 15 vertices comprise the signal
subgraph. The signal starts with no edges, then adds edges at
a constant rate over the course of the first 7 time steps, until it
reaches a prescribed density. At the last time step, edges are
removed, so that the subgraph has only 30% of the edges it
had in the previous sample. This could represent an increase in
communication leading up to an event, followed by dispersion
to avoid detection. The filter coefficients are optimized using
the Matlab Tensor Toolbox1. After integration according to
this filter, a chi-squared test for independence is performed in
the principal 2-dimensional subspace, as described in [8]. The
result of this test is used as our detection statistic.

Four separate scenarios were run. In one case, neither
dynamics nor attributes were considered. In this scenario, we
take the graph at time step n = 7, i.e., the point in time
where the subgraph is the densest. The residuals matrix used
is the modularity matrix of [11], i.e., A− (kkT )/‖k‖1. Thus,
the categories of the vertices are not considered. In the second
case, we use dynamics, but not attributes, estimating k without
considering categories, and integrating (A(n)− (kkT )/‖k‖1)
using the given filter coefficients. Third, we consider attributes,
but not dynamics. Again, only time step n = 7 is used, but
P is estimated using the method described in Section IV.
Finally, we use both dynamics and attributes. In this case,
P is estimated using measurements at all time steps, and we
integrate the residuals over time using the filter.

Detection performance in a 2000-trial simulation is pre-
sented in Figure 1. When neither dynamics nor attributes
are considered (top left), even when the subgraph is 100%
dense, detection performance is fairly mediocre. For densities
below 100%, performance is not much better than chance.
When dynamics, but not attributes, are taken into account
(top right), we achieve perfect detection performance when the
subgraph grows to 90% density, with performance decreasing

1Available online at http://www.sandia.gov/∼tgkolda/TensorToolbox/.
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Figure 1. Detection performance in simulated graphs. Simulations were run in which the detection algorithm either includes (right column) or does not
include (left column) dynamics, and includes (bottom row) or does not include (top row) vertex attributes. Densities listed are the greatest density of the
signal subgraph over an 8-sample window. Detection performance increases as the subgraph gets denser, and as more features of the graph are considered.

as the density is reduced. With attributes and not dynamics
(bottom left), even weaker subgraphs, with density of only
80%, are detected with near-perfect accuracy. Taking into
account both attributes and dynamics (bottom right), however,
provides a substantial benefit well beyond using either feature
individually. We see near-perfect detection when the subgraph
grows to only 45% density, which is undetectable in any of the
other cases, demonstrating that accounting for dynamics and
attributes has the potential to drastically increase performance.

VI. DATA ANALYSIS

Using the commercially available Thomson Reuters Web of
Science R© (WoS) database [13], we built a directed, dynamic
graph based on document citations. This dataset is comprised
of records, compiled for research purposes, representing schol-
arly publications of the international scientific community,
published between 1900 and present in public commercial
and open source journals and conference proceedings. Each
record represents an individual document, and fields include
document title and type, journal name, author names and
institutional affiliations (as provided in publication), cited
references, and publication date.

In the citation graph, each vertex represents a document,
with a directed edge going from vertex i to vertex j if

document i cites document j. We consider a citation graph for
each year, since this is the most reliable time resolution. For
each year, we fit the model in (2) to the graph at that time slice,
using the procedure outlined in Section IV, with the vertex
category determined by the “subject” field in the database.
Over the years from 1937 to 1986, the yearly graph increases
from about 1500 documents and 80,000 citations per year to
nearly 500,000 documents and 7.8 million citations per year.
At each year, after fitting the graph to the model, we integrate
the residuals over a 6-year window, using a linear ramp filter to
emphasize emergent behavior. The top 30 singular values are
computed, which are shown in the lefthand plot in Figure 2.
In 1976, there is a substantial uptick in several of the singular
values, so we will investigate this period of time in detail.

Looking at the window from 1971 to 1976, the second and
third right singular vectors (corresponding to cited documents)
are shown in the scatterplot on the right hand side of Figure 2.
(The first singular vector is dominated by a single, high-degree
vertex, seen in the lower left in the plot.) The highlighted
outliers toward the top of the plot all correspond to analytical
chemistry papers written in the 1950s and ’60s [14]–[18], all
of which have accumulated thousands of citations over the
years. Each of these documents has somewhat high degree



1940 1950 1960 1970 1980 1990
0

200

400

600

800

1000

1200

Year

S
in

g
u

la
r 

V
a

lu
e

Web of Science Citation Graph, 1937−1986

Figure 2. The Web of Science citation graph over 50 years. Singular values of the integrated residuals matrices grow over time, with a large spike in values
highlighted in 1976 (left). The singular vectors in 1976 show 5 outliers corresponding to analytical chemistry papers with high cross-subject citation (right).

in 1976, but not as high as some other vertices that do not
stand out in the residuals space. As it turns out, the dynamics
and the attributes of the graph cause these papers to stand out
over vertices that would be stronger otherwise. These 5 articles
increase their annual citation count over the course of the 6-
year time window, from less than 700 collective citations in
1971 to about 1000 in 1976. The ramp filter emphasizes this
growth to make these vertices stand out more prominently.
These documents also received citations from a broader range
of subjects than other documents. The 5 outliers are cited
by documents from between 63 and 76 of the 290 different
subject labels over the 6 years, while other analytical chemistry
papers with even higher degree were cited by documents from
47 to 55 different subjects over the same period. Without
considering document subjects, these 5 documents are buried
in the background noise, but their substantial cross-subject
citation brings them into the front of the residuals space,
demonstrating the power of this approach.

VII. SUMMARY

In this paper, we describe a simple model for incorpo-
rating vertex attributes into spectral analysis of dynamic
graph residuals. An approximation to the logistic regression
model enables both efficient computation of residuals and
simple fitting of model parameters. Simulations demonstrate
the benefit to detection performance of taking both dynamics
and vertex attributes into consideration, and an analysis of a
dynamic citation network shows that accounting for attribute
information emphasizes portions of the graph that would not
be strong otherwise. It is clear that using vertex metadata is
a powerful technique for subgraph detection, and future work
will focus on extending the approximation used here to an
even broader class of models, analyzing the statistics of the
suggested estimator, and determining detectability when the
observations are corrupted or obfuscated.
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